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Abstract

Algebraic expressions for projection operators and
symmetry-adapted functions (SAFs) of the icosahedral
group for spinor (double-valued) representations are
found by using the double-induced technique and
eigenfunction method. The SAFs are functions of the
angular momentum j, the quantum numbers �; �; � of
the group chain I � D5 � C5, and the multiplicity label
�m. By this procedure, SAFs for the group I are provided
once for all instead of one j value at a time.

1. Introduction

A signi®cant dif®culty with point-group applications is a
dependence upon tabulated results. For example, there
are many tables of results for the icosahedral group I.
Using the SO3 # I subduced technique and projection-
operator method, the single-valued (s-v) symmetry-
adapted functions (SAFs) of I have been calculated by
Michel (1992), Cohan (1958) and Elcoro et al. (1994),
with lmax � 10; 12; 16, respectively. Both the s-v and
double-valued (d-v) SAFs of I have been obtained by
McLellian (1961) for j � 0; 1

2 ; . . . ; 8. These SAFs are
symmetry adapted to the group chain I � C5. The
I � D5 � C5 SAFs for both s-v (vector) and d-v (spinor)
representations (reps) have been tabulated for j � 0±8
by Butler (1981) using a build-up procedure. Prandl et al.
(1996) proposed a recursive method for constructing
SAFs of I with the totally symmetric SAFs obtained in
this way for angular momentum l up to 30.

In Altmann & Herzig (1994), the s-v SAFs of the
group chain I � T � C2 are tabulated out to 12 digits
for l up to 15, while the d-v SAFs are given in terms of
the so-called spin harmonics, which are constructed by
coupling the s-v SAFs with the spin wave functions
(belonging to the irrep E1=2) using Clebsch±Gordan
(CG) coef®cients in accordance with the CG series,
which reads (with the irrep notation of I shown in
Table 1)

F1 � E1=2 � E1=2 �G3=2;

G� E1=2 � E3=2 � I5=2;

F2 � E1=2 � I5=2;

H � E1=2 � G3=2 � I5=2:

�1�

The spin harmonics are linear combinations of the
products of Ylm and spin-wave functions. This repre-
sentation is rather cumbersome and usually reducible
with respect to O3. Some low-angular-moment d-v SAFs
of I are given as linear combinations of j jmi in Table
T74.6a of Altmann & Herzig (1994).

Except for Butler (1981), who introduced a build-up
procedure, the conventional scheme for constructing
SAFs is the projection-operator method. The construc-
tion of SAFs for a high-symmetry group like I using
projection is very dif®cult (Herman, 1997).

So far, we have only considered numerical solutions
for determining SAFs of point groups. The shortcomings
of numerical results are quite clear. For example, for
practical calculations one usually needs various tables,
which may not be readily available, and when they are
they are frequently subject to printing errors. Another
dif®culty with tabulated material is that regularities are
hard to ®nd. It is highly desirable, therefore, to obtain
analytic or algebraic solutions for all point groups, just as
we have for the rotation group. Recently, some progress
has been made in this direction. For example, algebraic
solutions have been reported for all dihedral groups
(Chen et al., 1999) and the tetrahedral group (Chen &
Fan, 1998a,b,c). What makes an algebraic solution
appealing is the fact that the irreducible matrices,
projection operators and SAFs are then functions of the
quantum numbers ��; �� characterizing the group chain
[in analogy with � j;m� for SO3 � SO2] and these
expressions are valid for both s-v and d-v reps.

In a previous paper (Fan et al., 1999), we used the
double-induced technique and eigenfunction method to
obtain algebraic solutions for s-v reps of I. Simple
algebraic expressions were derived for the SAFs by
applying the reduced projection operators }��� ��� to Yl �m.
The reduced projection operator of I contains only 4
terms instead of 60 terms, but plays the same role as the
usual projection operator. Therefore, its introduction
greatly simpli®es the projection-operator method.
Indeed, the SAFs are merely functions of the angular
momentum l, the quantum numbers �; � of the group
chain I � C5 and the multiplicity label �m, without
involving any irreducible matrix elements. In this way,
the s-v SAFs problem of I has been solved once for all
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instead of one angular momentum l at a time. The
purpose of this study is to extend the treatment of the
s-v reps of I to its d-v reps, so we can have a complete
algebraic solution for the icosahedral group.

2. The representation group

We restrict ourselves to the proper point groups, since
an extension to the improper point groups is straight-
forward. In dealing with spinor reps, it is useful to begin
with a brief introduction of the double-point-group
concept. Consider a point group Ĝ

Ĝ � fR̂i : i � 1; 2; . . . ; jGjg; R̂i � Rni
�!i�; �2�

where Rni
�!i� denotes a rotation about the axis ni

through angle !i. The corresponding double point group
is

Ĝy � fR̂i; ~̂Ri : i � 1; 2; . . . ; jGjg; ~̂Ri � Rni
�!i � 2��:

�3�
We use Ri; ~Ri to denote the corresponding operators, or
matrices, of

R̂i; ~̂Ri

in a generic representation space. Rotations through an
angle ' and '� 2� are identical in a vector repre-
sentation space but differ in sign in a spinor repre-
sentation space. Therefore, in spinor space,

~Ri � ÿRi: �4�
A convenient way of dealing with the d-v reps of a point
or space group is by means of the so-called representa-
tion group (rep group) ®rst introduced by Chen et al.
(1985).

De®nition 1. The representation of a group Ĝ in a
representation space r forms a group, called the repre-
sentation group (rep group) Gr.

Remark 1. The representation r may be reducible or
irreducible and may be faithful or unfaithful. In this
study, we are interested in faithful and reducible rep
groups only; unfaithful rep groups ®nd their application
in Chen & Fan (1998b, p. 5505).

The elements Ra;Rb; . . . of Gr are matrices or
operators and if Ra � "Rb, where " is a complex number

with j"j � 1, Ra and Rb are said to be linearly dependent,
otherwise they are linearly independent.

De®nition 2. The number of linearly independent
elements of Gr is called the order of the rep group,
denoted by jGrj.

Remark 2. A fundamental difference between a rep
group and an ordinary group (i.e. a group in the usual
sense) is that the elements of the former may be linearly
dependent while those of the latter are always linearly
independent. When all elements of a rep group are
linearly independent, it reduces to the ordinary group.
In this sense, the ordinary group can be regarded as a
special case of the rep group.

Remark 3. A rep group differs from a matrix group in
the sense that for the latter all elements (matrices) are
regarded as linearly independent. For example, the
quaternion group Q,

Q � f�e;�i�x;�i�y;�i�zg;

which is isomorphic to the double group D
y
2

(C2k � ÿi�k, ~C2k � i�k, k � x; y; z), is of order 8, since
all elements are regarded as linearly independent. The
set of these eight matrices could also be regarded as a
rep group Q with four linearly independent elements.

Remark 4. The rep group used here is to be distinguished
from the representation group de®ned by DoÈ ring (1959)
and Birman (1974), which is a group in the usual sense.

Remark 5. Owing to the linear dependence of its
elements, the class operators (a class operator is a sum of
all elements belonging to the same class) of a rep group
are also linearly dependent: some may be null operators
and some may only differ in signs.

It is important to note that for the rep group we have
the generalized Burnside theorem (Chen et al., 1985,
p. 230):

Theorem 1. A rep group Gr has N inequivalent irreps, N
being the number of linearly independent class opera-
tors of Gr; the number of times each irrep occurs in the
representation space r is equal to its dimensions and the
sum of the squares of the dimensions of all irreps is
equal to the order jGrj,

Table 1. The subduction rule for I # D5 # C5 and eigenvalues (�; �) of (C;C5z)

I E1=2 E3=2 G3=2 I5=2

12c1=2 12c3=2 3 ÿ2
D5 E1=2 E3=2 E1=2 E3=2 E1=2 E3=2 �� 5

2� �ÿ 5
2�

� �12;ÿ1
2� �32;ÿ3

2� �12 ;ÿ 1
2� �32;ÿ3

2� �12 ;ÿ 1
2��32 ;ÿ 3

2� 5
2

5
2

The four irreps of I are labelled as E1=2;E7=2;F3=2; I5=2 in Altmann & Herzig (1994) and as 1
2 ;

~1
2;

3
2 ;

5
2 in Butler (1981). The eigenvalue � is related

to the irrep label � of C5 by � � exp�ÿ2��i=5�.
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PN
i�1

j�ij2 � jGrj: �5�

Example 1. The rep groups Gr of the inversion group
Ĝ � �ê; Î� in the representation spaces r � g; u asso-
ciated with I � 1;ÿ1 are Gg � �e; e� and Gu � �e;ÿe�,
respectively. The former is unfaithful while the latter is
faithful, and both have only one linearly independent
element. According to Theorem 1, both only have one
one-dimensional irrep, and they are just the rep groups
themselves.

Example 2. The quaternion group Q has ®ve classes with
class operators

C1 � e; C2 � ÿe; C3 � �i�x� � �ÿi�x�;
C4 � �i�y� � �ÿi�y�; C5 � �i�z� � �ÿi�z�:

The group Q � D
y
2 has ®ve irreps, four one-dimensional

and one two-dimensional. On the other hand, the rep
group Q has only one linearly independent class
operator, C1 � ÿC2 � e, C3 � C4 � C5 � 0. According
to Theorem 1, the rep group Q has a single irrep, which
according to (5) is two-dimensional and is just the
representation groupQ itself.Q is the spinor irrep of the
dihedral group D2.

In the above examples, the representations on which
the rep groups are de®ned are irreducible. What we are
interested in are the cases where the representations are
reducible, and we now turn to the double group Gy.

Example 3. The representation of Gy in a generic spinor
space forms a rep group G of order jGj,

G � fRi;ÿRi : i � 1; . . . ; jGjg: �6�

De®nition 3. The jGj-dimensional space
fRi : i � 1; . . . ; jGjg is called the group space of G, which
carries a representation space of G called the regular
representation of G.

The multiplication table of G is obtained from
that of Gy by replacing �R̂i; ~̂Ri� with �Ri; ÿRi�.
The regular representation of G is in general reducible
and our central task is to decompose it into irreps.

Several methods are available for ®nding d-v irreps of
a group G; four of interest to us follow: (i) the double-
group method (Bradley & Cracknell, 1972); (ii) the
subduction method (McLellian, 1961); (iii) the repre-
sentation group method where the problem of seeking
the d-v irreps of G is equivalent to that of seeking
the irreps of the rep group G of order jGj (Chen et
al., 1985); and (iv) the projective representation method
(Altmann, 1986). Obviously, the third approach is much
simpler than the ®rst one, since the order G is one half
of that of the group Gy.

The treatment of the rep group I is exactly the same
as for the s-v reps of the group I presented in Fan et al.

(1999) but with a few modi®cations noted below. In the
following, we deal only with the rep group and for
simplicity we shall just say the `group' instead of the `rep
group' and use the notation I, D5, C5 instead of I,D5, C5

for the respective rep groups.

3. The I � D5 � C5 projection operators

The rotation axes and the Euler angles of the 60
elements of the group I are shown in Fig. 1 and Tables 1
and 2 of Fan et al. (1999). With the Euler angles and the
rotation matrices D1=2��; �; � (Rose, 1957), the group
table of the double point group Iy can be constructed
and is available upon request from JQC.

We ®rst review the s-v case given in Fan et al. (1999).
A key for constructing SAFs is to ®nd the projec-
tion operator. The normalized generalized projection
operator for the group chain I � C5 is de®ned as

P��� ��� � �h�=60�1=2
P60

a�1

D
���
� ���Ra��Ra; �7�

where h� is the dimension of the irrep �, D����Ra� is the
irreducible matrix of the element Ra and � is the
quantum number of the cyclic group C5 generated from
C5z � C5;6. For brevity, the generalized projection
operator is referred to as the projection operator.

Consider the double-coset decomposition of I with
respect to the subgroup C5,

I �P4

i�1

C5�̂iC5 � C5��̂1 � �̂2� � C5��̂3 � �̂4�C5; �8a�

with the coset representatives chosen as

�̂1 � e; �̂2 � C2;8; �̂3 � C2;13; �̂4 � C2;5: �8b�
The projection operator (7) can be factorized into a
product of the projection operators P�;P �� of C5 and the
reduced projection operator }��� ��� ,

P��� ��� � �h�=60�1=2P�}��� ��� P ��; �9a�

}��� ��� �P4

i�1

Mÿ1
i d
���
� ����̂i���̂i; �9b�

where P� is the projection operator of C5 and Mi is the
number of the times an element appears in the double
coset C5�̂iC5,

Mi � 5; i � 1; 2

1; i � 3; 4:

�
�10�

The I � C5 projection operator P��� ��� ful®ls the
following set of eigenvalue equations:

�C;C5z; �C5z�P��� ��� � ��; ��; � ���P��� ��� ; �11�
where C and C5z are the CSCO (complete set of
commuting operators) (Chen, 1989) of I and C5, the
quantum numbers �; � are labels of the irreps of I and



1052 SYMMETRY-ADAPTED FUNCTIONS OF THE ICOSAHEDRAL GROUP

C5, and �C5z is the intrinsic operator, which is the
operator C5z acting from the right, �C5zP��� ��� � P��� ��� C5z.

The modi®cations necessary for extending the
method of Fan et al. (1999) for the s-v case to the d-v
case are:

Modi®cation 1. Possible eigenvalues of the CSCO,

C �P6

j�1

�C5;j � Cÿ5;j�; �12�

of I in a generic spinor space are

12c1=2�� 3� 3�5�1=2�; 12c3=2�� 3ÿ 3�5�1=2�; 3; ÿ2;

�13�
with c� � cos�2��=5�, which correspond to the four
d-v irreps, �E1=2;E3=2;G3=2; I5=2� in the modi®ed
Mulliken notation, as shown in Table 1. As will be seen
later, this notation is very convenient for obtaining
algebraic expressions of the projection operators.
The eigenvalues �ÿ of C for the irrep ÿ in (13) can be
found by solving the eigenvalue equation of C shown in
(20b) or by the known character �ÿ

i for the class i,
fC5;j;Cÿ5;j : j � 1; . . . ; 6g, through the relation

�ÿ � gi�
ÿ
i =hÿ;

where hÿ is the dimension of the irrep ÿ and gi � 12
is the number of elements in the class
fC5;j;Cÿ5;j : j � 1; . . . ; 6g.

Modi®cation 2. The operator

C5;6 � C5z � exp�ÿ2�Jzi=5� �14�
remains the CSCO of C5 but C5

5z is no longer equal to the
identity operator e. Instead, we have C5

5z � ÿe. In a
spinor space, the operator C5z has ®ve distinct eigen-
values:

� � �� � exp�ÿ2��i=5�; � � �1
2;�3

2;
5
2: �15�

Note that

���5�k � ÿ�k; C5�k
5z � ÿCk

5z;

�1=2 � ÿ�ÿ2; �3=2 � ÿ�ÿ1; �5=2 � ÿ�0 � ÿ1:

The unnormalized projection operator P� in (9a) of the
cyclic group C5 is de®ned as

P� � P� � 1
2

P9

k�0

����k�C5z�k

� e� ��C5z � ��2C2
5z � �2Cÿ2

5z � �Cÿ5z: �16�

Modi®cation 3. For the d-v case, the group chain
I � D5 � C5 is canonical while I � C5 is not. The
I � D5 � C5 projection operator is denoted by P��� �� ��

��

and obeys the eigenvalue equations

�C;CD5
;C5z; �CD5

; �C5z�P��� �� ��
�� � ��; �; ��; ��; � ���P��� �� ��

�� ;

�17�
where CD5

and �CD5
are the CSCO of D5 and the

intrinsic group �D5. From the subduction rule (Butler,
1981) shown in Table 1, it is known that the subgroup D5

is redundant for all cases except � � 5
2. Therefore, for

� 6� 5
2, the eigenvalue equations for CD5

and �CD5
in (17)

are redundant. On the other hand, the irrep � � 5
2 of C5

occurs twice in the irrep I5=2, which is distinguished by
the irreps �� 5

2�; �ÿ 5
2� of D5 in Butler's (1981) notation

(the square brackets are added here to distinguish them
from the quantum number � � � 5

2) or ÿ7, ÿ8 in the
Koster et al. (1963) notation. Since the irreps �� 5

2� of D5

are one-dimensional, the diagonalization of �CD5
; �CD5
�

can be replaced by a much simpler procedure, that is, by
the diagonalization of a single twofold rotation of D5

and its intrinsic counterpart, for example, �C2;8; �C2;8�.
A discussion of the labelling is in order for the

I � D5 � C5 basis. From Table 1, it can be seen that for
� 6� 5

2 the � label of D5 is redundant,

��;Ej�j; �� ! ��; ��; � � �1
2;� 3

2 :

When � � �� 5
2�, the quantum number � � 5

2 is redun-
dant,

��; �� 5
2�; 5

2� ! ��; �� 5
2��:

Therefore, the I � D5 � C5 irreducible basis can still be
labelled by two quantum numbers ��; �� but with the
above extended meaning for � � �� 5

2�,
��; ��; � � �1

2;� 3
2 ; �� 5

2�:
As for the s-v case, the following orthonormal vectors,

�1
� �� � �� ���

1
�;

�3
� �� � 1

5 P�C2;13P ��;

�2
� �� � ��ÿ ���

2
�;

�4
� �� � 1

5 P�C2;5P ��;
�18a�

form the double-induced representation ��; ���, where

�1
� � �1=51=2�P�; �2

� � �1=51=2�P�C2;8: �18b�
There are altogether 5� 5� 25� 25 � 60 linearly
independent basis vectors in (18a) and (18b), which is
just the order of the rep group I.

The representation matrix M of the CSCO of the
group I in the double-induced representation ��; ��� is

Mij��; ��� � h�i
� ��jCj�j

� ��i: �19�
The projection operators can be expressed as

P��� ��� �P4

i�1

u
���
i;� ���

i
� ��; �20a�

and the coef®cients ui � u
���
i;� �� are determined from the

matrix equation

M��; ���u���� �� � �u
���
� ��; �20b�
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where u � fu1; . . . ; u4gcolumn are orthonormalized
column vectors.

Using the group table of Iy and techniques similar to
those used in Chen & Fan (1998a), we can determine the
action of C in the double-induced representation, which
can be simpli®ed as

C�1
� � 2c��

1
� � 2�5�1=2is2��

4
��;

C�2
� � 2c��

2
� ÿ 2�5�1=2is2��

3
�ÿ�;

C�3
� �� � 2�5�1=2is2���ÿ ���

2
� � 2�c� � c �� � c�� ����3

� ��

ÿ 2�c2��2 �� � c3��2 ����4
� ��;

C�4
� �� � ÿ2�5�1=2is2��� ���

1
� ÿ 2�c2��2 �� � c3��2 ����3

� ��

� 2�c� � c �� � c�ÿ ����4
� ��:

�21�
From (21), we get the matrix M,

M � 2

c��� �� 0 0 ÿi51=2s2��� ��

0 c���ÿ �� i51=2s2���ÿ �� 0

0 ÿi51=2s2���ÿ �� c� � c �� � c�� �� ÿc2��2 �� ÿ c3��2 ��

i51=2s2��� �� 0 ÿc2��2 �� ÿ c3��2 �� c �� � c� � c�ÿ ��

2664
3775:
�22�

Here and below, we use the following three symbols for
commonly occurring quantities:

c� � cos�2��=5�; s� � sin�2��=5�;
t� � tan�2��=5�: �23�

The table of numerical values for these quantities is
shown in Table 2. There exist many useful relations
between these quantities:

cÿ� � c�;

c1 � c4 � ÿc3=2;

s1 � ÿs4 � s3=2;

t1 � ÿt4 � ÿt3=2;

sÿ� � ÿs�;

c2 � c3 � ÿc1=2;

s2 � ÿs3 � s1=2;

t2 � ÿt3 � ÿt1=2:

�24�

The eigenvectors of the matrix M will be obtained
separately in four cases:

Case (i). � � �� � � 1
2 ;� 3

2 �� � �� 6� real�.
In this case, the matrix M is three-dimensional. In the

basis �1
�, �3

�� and �4
��,

M � 2

c� 0 ÿi51=2s2�

0 2c� � c2� c� � 1

i51=2s2� c� � 1 2c� � 1

0@ 1A �25�

with eigenvectors

P����� � N� �
1
� �

i��ÿ 2c���c� � 1�
51=2s2���ÿ 4c� ÿ 2c2��

�3
��

�
� i

�ÿ 2c�

2�5�1=2s2�

�4
��

�
�26�

and eigenvalues � � 3; ÿ2; 12c�.
Equation (26) gives the algebraic expression of the

projection operators as a function of �. This expression
is very elegant if the quantum number � is used as an
irrep label. Unfortunately, most are not familiar with
this new labelling scheme and therefore it is more
convenient to change back to the Mulliken notation.
From (26) and Table 1, we obtain the projection
operators in a more explicit but less compact form:

P�G3=2��
� � �1=31=2���1

� ÿ �i=51=2�t2��
3
��

� �i=51=2�t��4
���

P�I5=2��
� � �1=21=2���1

� � �i=51=2�2s��
3
��

ÿ �i=51=2�2s2��
4
���; � � �1

2;�3
2

P�Ej�j��� � �1=61=2���1
� � �i=2�51=2sÿ1

2��
3
��

� �i=2�51=2sÿ1
� �

4
���;

8>>>>>>>>><>>>>>>>>>:
�27�

where t� � s�=c�:
Case (ii). � � ÿ �� � � 1

2 ;� 3
2 �� � ��� 6� real�.

The matrix M is again three-dimensional. In the basis
�2
�, �3

�ÿ� and �4
�ÿ�,

M � 2

c� i51=2s2� 0

ÿi51=2s2� 2c� � 1 ÿc� ÿ 1

0 ÿc� ÿ 1 2c� � c2�

0@ 1A: �28�

The eigenvalues are the same as for case (i), while the
eigenvectors are given by

P���ÿ�� � N� �
2
� ÿ i

�ÿ 2c�

2�5�1=2s2�

�3
�ÿ�

�
� i��ÿ 2c���c� � 1�

51=2s2���ÿ 4c� ÿ 2c2��
�4
�ÿ�

#
: �29�

This gives

Table 2. The value of s�; c� and t�

c1=2 � ÿc2 c3=2 � ÿc1 s1 � s3=2 s2 � s1=2

�1� 51=2�=4 �1ÿ 51=2�=4 �10� 2�5�1=2�1=2=4 �10ÿ 2�5�1=2�1=2=4

t1 � ÿt3=2 t2 � ÿt1=2 s2c2
1 s1c2

2

�5� 2�5�1=2�1=2 ÿ�5ÿ 2�5�1=2�1=2 �50ÿ 22�5�1=2�1=2=16 �50� 22�5�1=2�1=2=16
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P�G3=2�ÿ�
� � �1=31=2���2

� ÿ �i=51=2�t��3
�ÿ�

ÿ �i=51=2�t2��
4
�ÿ��

P�I5=2�ÿ�
� � �1=21=2���2

� � �i=51=2�2s2��
3
�ÿ�

� �i=51=2�2s��
4
�ÿ��; � � �1

2;�3
2

P�Ej�j�ÿ�� � �1=61=2���2
� ÿ �i=2�51=2sÿ1

� �
3
�ÿ�

� �i=2�51=2sÿ1
2��

4
�ÿ��:

8>>>>>>>>><>>>>>>>>>:
�30�

Case (iii). �� : ��� � �� 1
2 ;� 3

2�.
We use the symbol �� : ��� to denote ��; ��� or � ��;��.

Now �1 � �2 � 0 and the double-induced representa-
tion becomes two-dimensional. In the basis ��3

� ��; �
4
� ���,

the matrix M simpli®es to

M � 2
c �� � c� � c�� �� ÿ�c2��2 �� � c3��2 ���
ÿ�c2��2 �� � c3��2 ��� c� � c �� � c�ÿ ��

� �
:

�31�
This matrix has the nondegenerate eigenvalues 3 andÿ2
with the eigenvectors

P��� ��� � N� �
3
� �� ÿ

�ÿ 2c� ÿ 2c �� ÿ 2c�� ��

2c2��2 �� � 2c3��2 ��

�4
� ��

� �
;

� � 3;ÿ2:

�32�
That is,

P�I5=2� ��
� � �2=51=2��s2��� ����

3
� �� ÿ s�� ���

4
� ���;

P�G3=2� ��
� � �2=51=2��s2��ÿ ����

3
� �� ÿ s�ÿ ���

4
� ���;

(
�� : ��� � ��1

2;�3
2�:
�33�

Case (iv). � or/and �� are equal to 5
2.

When � � �� � 5
2, the matrix in (22) reduces to

ÿ2� I, where I is a 4� 4 unit matrix, and it has a
fourfold root � � ÿ2, corresponding to the six-dimen-
sional irrep I5=2. For � � ÿ2, we have four linearly
independent eigenvectors,

�1
5
2
; �2

5
2
; �3

5
2

5
2
; �4

5
2

5
2
: �34�

When �� : ��� � �52 ;� 1
2�; �52 ;� 3

2�, the matrix in (31)
becomes ÿ2� I, where I is a 2� 2 unit matrix,
and its eigenvalue � � ÿ2 has double degeneracy.
The two linearly independent eigenvectors
are

�3
� ��; �4

� ��; �� : ��� � �52;�3
2�; �52;�1

2�: �35�
From (34) and (35), we know that for either� or �� equal
to 5

2 the eigenvectors of �C;C5z; �C5z� still have
degeneracy and we need to use the operators C2;8

and �C2;8 to lift the degeneracy by diagonalizing C2;8

and �C2;8 in the space f�1
�; �

2
�; �

3
� ��; �

4
� ��g with � or/and

�� � 5
2.

Using the group table of Iy and (18a), we obtain

C2;8�
1
5
2
� �2

5
2
; C2;8�

3
5
2 �� � ÿ�4

5
2 ��; �� � �1

2;�3
2;

5
2 �36a�

�C2;8�
1
5
2
� �2

5
2
; �C2;8�

3
�5

2
� �4

�5
2
; � � �1

2;�3
2;

5
2 : �36b�

Note that from C2;8jxi � jyi; �C2;8jx0i � jy0i, we have
C2;8jyi � ÿjxi; �C2;8jy0i � ÿjx0i, due to C2

2;8 � ÿe.
And using (36), we obtain the common eigenvectors of
C2;8 and �C2;8 in the spaces (34) and (35):

P�I5=2���5
2�

��5
2�
� �1=21=2���1

5
2
� i�2

5
2
�;

P�I5=2���5
2�

��5
2�
� �1=21=2���3

5
2

5
2
� i�4

5
2

5
2
�;

P�I5=2���5
2�

� � �1=21=2���3
� 5

2
� i�4

� 5
2
�; � � �1

2;�3
2;

P�I5=2� ��
��5

2�
� �1=21=2���3

5
2 ��
� i�4

5
2 ��
�; �� � �1

2;�3
2;

8>>>>>><>>>>>>:
�37�

where we used the fact that the eigenvalues � � ÿi and i
of C2;8 correspond to the one-dimensional irreps �� 5

2�
and �ÿ 5

2� of D5, respectively.

4. The I � D5 � C5 reduced projection operators

Substituting (18a,b) into (27), (30), (33) and (37)
and choosing appropriate phase factors as
described in Fan et al. (1999), we get the projection
operators P��� ��� in terms of P��̂iP

��. According
to (9), by deleting the factor �h�=60�1=2P�P ��,
we obtain the following reduced projection
operators:

}�E� ��� � 1
5 ê� �i=2��sÿ1

2� �̂3 � sÿ1
� �̂4�;

}�E� �ÿ�� � �ÿ1���� �15 �̂2 ÿ �i=2��sÿ1
� �̂3 ÿ sÿ1

2� �̂4��;

(
� � ��; � � 1

2 ;
3
2 �38a�

}
�G3=2��
� � 1

5 êÿ �i=5��t2��̂3 ÿ t��̂4�;
}
�G3=2�ÿ�
� � �ÿ1��ÿ1=2�15 �̂2 ÿ �i=5��t��̂3 � t2��̂4��;

(
� � �1

2;�3
2 �38b�

}
�G3=2� ��
� � �2�3�1=2=5��� ���s2��ÿ ����̂3 ÿ s�ÿ ���̂4�;

�� : ��� � ��1
2;�3

2�;

where �� �� � ����� are phase factors,
�1

2
3
2
� ÿ�1

2ÿ3
2
� ÿ�ÿ1

2
3
2
� ÿ�ÿ1

2ÿ3
2
� i;
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}
�I5=2��
� � 1

5 ê� 2
5 i�s��̂3 ÿ s2��̂4�;

}
�I5=2�ÿ�
� � �ÿ1���1=2�15 �̂2 � 2

5 i�s2��̂3 � s��̂4��;

(
� � �1

2;�3
2

}
�I5=2� ��
� � �81=2=5��� ���s2��� ����̂3 ÿ s�� ���̂4�;

�� : ��� � ��1
2;�3

2�
}
�I5=2���5

2�
��5

2�
� 1

5 �ê� i�̂2�

}
�I5=2���5

2�
��5

2�
� �1=51=2����5

2�;��5
2���̂3 � i�̂4�

8><>:
}
�I5=2���5

2�
� � �1=51=2���;��5

2���̂3 � i�̂4�;
� � �1

2;�3
2

}
�I5=2� ��
��5

2�
� �1=51=2����5

2�; ����̂3 � i�̂4�; �� � �1
2;�3

2;

�38c�

where the phase factors �� �� � ÿ����;� are listed in Table
3. It is important to note that a reduced projection
operator contains 4 rather than 60 terms, which repre-
sents a major simpli®cation.

5. The I � D5 � C5 irreducible matrices

Algebraic expressions for the reduced projection
operators are functions of the quantum numbers �, �, ��
only and thus are very concise; nonetheless, they contain
nearly all required information about irreducible matrix
elements. Speci®cally, for constructing SAFs the
reduced projection operators suf®ce; however, if one
needs to ®nd the CG coef®cients, a knowledge of the
irreducible matrices of the coset representatives is also
required. A prescription for ®nding the latter follows.

Since the operator C5;6 � C5z is diagonal in the
I � C5 basis, its irreducible matrix is D

���
� ���C5;6� � ���� ��.

On the other hand, according to (9b), the coef®cients in
front of the coset generator �̂i=Mi in the reduced
projection operators are just the complex conjugate of
the matrix elements of �̂i. Therefore, from (38) one can
read off the irreducible matrices of the double-coset
generator �̂2; �̂3; �̂4 directly:

D�E1=2��C5;6� �
�1

2
0

0 �ÿ1
2

" #
;

D�E1=2���̂2� �
0 ÿ1

1 0

� �
;

D�E1=2���̂3� � ÿ
i

2

sÿ1
1 sÿ1

2

sÿ1
2 ÿsÿ1

1

� �
;

D�E1=2���̂4� �
i

2

ÿsÿ1
2 sÿ1

1

sÿ1
1 sÿ1

2

� �
;

�39a�

D�E3=2��C5;6� �
�3

2
0

0 �ÿ3
2

" #
;

D�E3=2���̂2� �
0 ÿ1

1 0

� �
;

D�E3=2���̂3� � ÿ
i

2

ÿsÿ1
2 sÿ1

1

sÿ1
1 sÿ1

2

� �
;

D�E3=2���̂4� � ÿ
i

2

sÿ1
1 sÿ1

2

sÿ1
2 ÿsÿ1

1

� �
;

�39b�

D�G3=2��C5;6� �

�3
2

0 0 0

0 �1
2

0 0

0 0 �ÿ1
2

0

0 0 0 �ÿ3
2

26664
37775;

D�G3=2���̂2� �

0 0 0 ÿ1

0 0 1 0

0 ÿ1 0 0

1 0 0 0

26664
37775;

D�G3=2���̂3� �
i

5

ÿt2 2�3�1=2s2 2�3�1=2s1 t1

2�3�1=2s2 t1 ÿt2 ÿ2�3�1=2s1

2�3�1=2s1 ÿt2 ÿt1 2�3�1=2s2

t1 ÿ2�3�1=2s1 2�3�1=2s2 t2

26664
37775;

D�G3=2���̂4� � ÿ
i

5

ÿt1 2�3�1=2s1 ÿ2�3�1=2s2 ÿt2

2�3�1=2s1 ÿt2 ÿt1 2�3�1=2s2

ÿ2�3�1=2s2 ÿt1 t2 2�3�1=2s1

ÿt2 2�3�1=2s2 2�3�1=2s1 t1

26664
37775:

�39c�

Table 3. The phase factors �� �� of I5=2

1
2 ÿ 1

2
3
2 ÿ 3

2 �52� �ÿ 5
2�

1
2 ÿ1 ÿi i �i=51=2���1 �i=51=2��1

ÿ 1
2 i i ÿ�1=51=2���1 �1=51=2���1
3
2 1 �i=51=2��2 �i=51=2���2
ÿ 3

2 �1=51=2��2 ÿ�1=51=2���2
�52� ÿ�1=51=2��3

�� �� � ÿ�����. �1 � 2�s2 � is1�; �2 � �1=21=2��ÿt2 � it1�; �3 � �8=51=2��s2c2
1 � is1c2

2�:
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With the rows (columns) in the order of
�� 5

2�; 3
2 ;

1
2 ;ÿ 1

2 ;ÿ 3
2 ; �ÿ 5

2�, the matrices for the irrep I5=2

are

D�I5=2 ��C5;6� � f�5
2
; �3

2
; �1

2
; �ÿ1

2
; �ÿ3

2
; �5

2
gdiag

D�I5=2 ���̂2� �

ÿi 0 0 0 0 0

0 0 0 0 1 0

0 0 0 ÿ1 0 0

0 0 1 0 0 0

0 ÿ1 0 0 0 0

0 0 0 0 0 i

2666666664

3777777775
;

D�I5=2 ���̂3� �
i

51=2

0 ÿ�2 ÿ��1 ÿi��1 i�2 ÿ��3
ÿ��2 ÿ2s1 ÿ81=2s1 ÿ81=2s2 2s2 ÿ�2

ÿ�1 ÿ81=2s1 ÿ2s2 2s1 81=2s2 ÿ��1
i�1 ÿ81=2s2 2s1 2s2 ÿ81=2s1 ÿi��1
ÿi��2 2s2 81=2s2 ÿ81=2s1 2s1 i�2

ÿ�3 ÿ��2 ÿ�1 i�1 ÿi��2 0

2666666664

3777777775
;

�39d�

D�I5=2 ���̂4� � ÿ
i

51=2

0 i�2 i��1 ÿ��1 �2 i��3
ÿi��2 2s2 81=2s2 ÿ81=2s1 2s1 i�2

ÿi�1 81=2s2 ÿ2s1 ÿ2s2 81=2s1 i��1
ÿ�1 ÿ81=2s1 ÿ2s2 2s1 81=2s2 ÿ��1
��2 2s1 81=2s1 81=2s2 ÿ2s2 �2

ÿi�3 ÿi��2 ÿi�1 ÿ�1 ��2 0

2666666664

3777777775
;

�39e�

where the identities (24) have been used and

�1 � 2�s2 � is1�; �2 � �1=21=2��ÿt2 � it1�;
�3 � �8=51=2��s2c2

1 � is1c2
2�:

Chen & Fan (1998c) show that when calculating CG
coef®cients with the reduced projection operator only
the irreducible matrices of the above double-coset
representatives are required. If one needs the irre-
ducible matrices of other elements, they can be obtained
through the following simple formulas:

D
���
� ���Cj

5;6�̂2� � �j
�D
���
� ����̂2�;

D
���
� ���Cj

5;6�̂3Ck
5;6� � �j

�D
���
� ����̂3��k

��;

D
���
� ���Cj

5;6�̂4Ck
5;6� � �j

�D
���
� ����̂4��k

��:

�40�

Using the group table of Iy, we can obtain the pair of
indexes �j; k� for each element of Iy, as shown in Table 4.
Equations (39) and (40) give the algebraic expressions
of the irreducible matrix elements.

6. The I � D5 � C5 SAFs

We now derive algebraic expressions for SAFs, which
are functions of the angular momentum j, the quantum
numbers �, � and the multiplicity label �m. As shown in
Fan et al. (1999), the SAFs can be obtained by applying
the reduced projection operator to a trial state j j �mi,

 ��� �m� � }��� ��� j j �mi; �41a�
where magnetic quantum number conservation rules
apply,

�m �: ��; m �: �: �41b�
Here, �m�: �� means �m � �� �mod 5� and for each irrep we
need only one set of the reduced projection operators
with a speci®c intrinsic quantum number ��, which is
chosen to be 1

2 for all irreps except the E3=2 in which case
�� � 3

2, that is,

}
�E1=2� 1

2
� ; }

�E3=2� 3
2

� ; }
�G3=2� 1

2
� ; }

�I5=2� 1
2

� : �41c�
Using the D function from Rose (1957) and the Euler
angles for the coset representatives listed in Table 2 of
Fan et al. (1999), we have that

�̂2j j �mi � �ÿ1� jÿ �mj jÿ �mi;
�̂3j j �mi �P

m

exp�ÿi �m��d j
m �m��3�j jmi;

�̂4j j �mi �P
m

exp�ÿim��d j
m �m��4�j jmi;

�41d�

where �3 � �ÿ ! and �4 � !.
From (41a)±(41d), we obtain the unnormalized

I � D5 � C5 d-v SAFs:

Table 4. The elements of double cosets

j 0 1 2 3 4
C

j
5;6 1 2 14 ÿ15 ÿ3

C
j
5;6 � 53 53 54 49 ÿ59 ÿ47
� j; k� (0,0) (0,1) (0,2) (0,3) (0,4) (1,0) (1,1) (1,2) (1,3) (1,4)
C

j
5;6 � 58 � Ck

5;6 58 ÿ21 ÿ30 ÿ28 ÿ16 ÿ17 ÿ42 ÿ32 ÿ24 ÿ52
C

j
5;6 � 50 � Ck

5;6 50 ÿ35 ÿ13 ÿ6 ÿ44 ÿ45 ÿ11 ÿ8 ÿ41 ÿ56
� j; k� (2,0) (2,1) (2,2) (2,3) (2,4) (3,0) (3,1) (3,2) (3,3) (3,4)
C

j
5;6 � 58 � Ck

5;6 7 4 36 57 ÿ40 12 26 46 37 ÿ9
C

j
5;6 � 50 � Ck

5;6 29 39 22 55 ÿ25 31 18 60 ÿ23 ÿ33
� j; k� (4,0) (4,1) (4,2) (4,3) (4,4)
C

j
5;6 � 58 � Ck

5;6 ÿ20 ÿ48 19 38 43
C

j
5;6 � 50 � Ck

5;6 ÿ34 ÿ51 27 5 10

The eigenvalue � is related to the irrep label � of C5 by � � exp�ÿ2��i=5�: The bold-face integers are indices of the group elements of I as
indexed in Table 2 of Fan et al. (1999).
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(i) Two-dimensional irreps

 
�E�� �m
� � j j �mi � 5

2

P
m�: �

��ÿ1� �mÿ1=2sÿ1
2�d

j
m �m��3�

� �ÿ1�mÿ1=2sÿ1
� d

j
m �m��4�

��� jm
�
; � � 1

2;
3
2; �42�

 
�E�� �mÿ� � �ÿ1� jÿ �mj jÿ �mi ÿ 5

2

P
m�:ÿ�

��ÿ1� �mÿ1=2sÿ1
� d

j
m �m��3�

ÿ �ÿ1�mÿ1=2sÿ1
2�d

j
m �m��4�

��� jm
�
:

(ii) Four-dimensional irrep

 
�G3=2� �m
1
2

� j j �mi ÿ P
m�: 1=2

��ÿ1� �mÿ1=2t1d
j
m �m��3�

� �ÿ1�mÿ1=2t2d
j
m �m��4�

��� jm
�
;

 
�G3=2� �m
ÿ1

2

� �ÿ1� j� �mj jÿ �mi � P
m�:ÿ1=2

��ÿ1� �mÿ1=2t2d
j
m �m��3�

� �ÿ1�m�1=2t1d
j
m �m��4�

��� jm
�
; �43a�

 
�G3=2� �m
� � P

m�: �

��ÿ1� �m�1=2
s2�ÿ1d

j
m �m��3�

� �ÿ1�mÿ1=2s�ÿ1=2d
j
m �m��4�

��� jm
�
; � � �3

2:

(iii) Six-dimensional irrep

 
�I5=2� �m
1
2

� j j �mi � 2
P

m�: 1=2

��ÿ1� �mÿ1=2s2d
j
m �m��3�

� �ÿ1�m�1=2s1d
j
m �m��4�

��� jm
�
;

 
�I5=2� �m
ÿ1

2

� �ÿ1� jÿ �mj jÿ �mi ÿ 2
P

m�:ÿ1=2

��ÿ1� �mÿ1=2s1d
j
m �m��3�

� �ÿ1�mÿ1=2s2d
j
m �m��4�

��� jm
�
; �43b�

 
�I5=2� �m
� � �ÿ1��ÿ1=2

P
m�: �

��ÿ1� �mÿ1=2s2��1d
j
m �m��3�

ÿ �ÿ1�mÿ1=2s��1=2d
j
m �m��4�

��� jm
�
; � � �3

2;

 
�I5=2� �m
��5

2�
� �1=21=2�� �I5=2� �m

5
2

� i 
�I5=2� �m
ÿ5

2

�;

where

 
�I5=2� �m
5
2

� P
m�: 5=2

��ÿ1� �mÿ1=2s2d
j
m �m��3�

� �ÿ1�mÿ1=2s1d
j
m �m��4�

��� jm
�
;

 
�I5=2� �m
ÿ5

2

� P
m�:ÿ5=2

��ÿ1� �mÿ1=2s1d
j
m �m��3�

� �ÿ1�m�1=2s2d
j
m �m��4�

��� jm
�

�44�

are two real functions. As will be shown later [see
equations (47) and (48)], these functions form the
SO3 # I irreducible basis. Note that except for the irrep
I5=2, the I � Cs SAFs and SO3 # I SAFs are identical for
all irreps (including all s-v irreps, and the d-v irreps E1=2,
E3=2 and G3=2).

7. The multiplicity problem and symmetries of the SAFs

In (42)±(43b), the quantum �m serves naturally as the
multiplicity label of the irrep � in the subduced rep
D j # I, and its possible values are decided by (41b) and
(41c), that is

�m �:
1
2; for E1=2;G3=2; I5=2
3
2 ; for E3=2.

�
In general, SAFs  ��� �m� with different �m may be neither
orthogonal nor linearly independent. When an irrep �
occurs only once in D j, �m may take any permissible
value. The results with different �m differ at most
by an overall phase. When an irrep � occurs � times,
we need to let �m taking � different values,
�m � ��; ��� 5; ��ÿ 5; . . .. According to our experience,
the � sets of SAFs  ��� �m� are always linearly independent,
though not orthogonal in �m. In practical calculation, as a
check we evaluate the determinant of the � � � overlap
matrix,

Table 5. The multiplicity � j
� of the irrep � of the group I in the subduced rep D j # I

j A F1 F2 G H j E1=2 E3=2 G3=2 I5=2

0 1 1=2 1
1 1 3=2 1
2 1 5=2 1
3 1 1 7=2 1 1
4 1 1 9=2 1 1
5 1 1 1 11=2 1 1 1
6 1 1 1 1 13=2 1 1 1 1
7 1 1 1 1 15=2 1 2
8 1 1 2 17=2 1 1 2
9 1 1 2 1 19=2 1 1 1 2

10 1 1 1 1 2 21=2 1 2 2
11 2 1 1 2 23=2 1 1 2 2
12 1 1 1 2 2 25=2 1 1 1 3
13 1 2 2 2 27=2 1 2 3
14 1 1 2 3 29=2 1 1 2 3

D j � regÿD29ÿj; j � 15; 31=2; . . . ; 28; 57=2; 29: D30n�l � n reg�Dl; l � 0; 1; 2; . . . ; 29; reg � A� 3F1 � 3F2 � 4G� 5H:
D30n�j � n reg�Dj, j � 1=2; 3=2; . . . ; 59=2, D59=2 � reg � 2E1=2 � 2E3=2 � 4G3=2 � 6I5=2.
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det
��h ��� �m� j ��� �m

0
� i��;

for any given value of �. If it is nonzero, then the � sets
of SAFs  ��� �m� are linearly independent. We checked the
cases with j up to 59=2 and no example of linear
dependence is found. To ®nd numerical results from the
algebraic expressions, the multiplicity � j

� for the occur-
rence of the irrep � of I in the subduced representation

D j # I is calculated ®rst by using the character theory
and is used as a control parameter for the calculation.
An orthogonal procedure is not included; to do so would
lose the simplicity of the algebraic expressions for SAFs.
The table of the multiplicity � j

� is given in Table 5.
With the algebraic expressions in hand, it is very easy

to ®nd the exact numerical expression of the SAFs  ��� �m�

for any j with the help of some software such as Maple

Table 6. The d-v SAFs for I � D5 � C5 [jI5=2 � 5
2i are SO3 # I SAFs, see equations (43b) and (44)]

j � 1
2 �m � 1

2 jE1=2 �i � j 12�i; � � �1
2; j � 3

2 �m � 1
2 jG3=2 �i � j 32�i; � � �1

2;�3
2

j � 5
2 �m � 1

2 jI5=2 �i � j 52�i; �1
2;�3

2;�5
2

j � 7
2 �m � ÿ7

2 �m � 1
2

jE3=2
3
2i � ��2� 3� 5�1=2=�2� 5��j 72ÿ7

2ji � ��2� 5� 7�1=2=�2� 5��j 72 3
2i jI5=2

5
2i � ÿ�7=�5� 21=2��j 72ÿ 5

2i � �1=�5� 21=2��j 72 5
2i

jE3=2ÿ3
2i � ��2� 5� 7�1=2=�2� 5��j 72ÿ3

2i ÿ ��2� 3� 5�1=2=�2� 5��j 72 7
2i jI5=2

3
2i � ��2� 5� 7�1=2=�2� 5��j 72ÿ 7

2i ÿ ��2� 3� 5�1=2=�2� 5��j 72 3
2i

jI5=2
1
2i � j 72 1

2i
jI5=2 ÿ 1

2i � ÿj 72ÿ 1
2i

jI5=2 ÿ 3
2i � ��2� 3� 5�1=2=�2� 5��j 72ÿ 3

2i � ��2� 5� 7�1=2=�2� 5��j 72 7
2i

jI5=2 ÿ 5
2i � ÿ�1=�5� 21=2��j 72ÿ 5

2i ÿ �7=�5� 21=2��j 72 5
2i

j � 15
2 �m � ÿ 9

2

jI5=2
1
2i � �2�5� 29�1=2=52�j 15

2 ÿ 9
2i � �3�5� 7� 11� 29�1=2=�2� 52 � 29��j 15

2
1
2i � �3�3� 5� 13� 29�1=2=�2� 52 � 29��j 15

2
11
2 i

jI5=2 ÿ 1
2i � �3�3� 5� 13� 29�1=2=�2� 52 � 29��j 15

2 ÿ 11
2 i ÿ �3�5� 7� 11� 29�1=2=�2� 52 � 29��j 15

2 ÿ 1
2i � �2�5� 29�1=2=52�j 15

2
9
2i

jI5=2
3
2i � ÿ�33�2� 3� 5� 29�1=2=�2� 52 � 29��j 15

2 ÿ 7
2i ÿ �19�2� 5� 11� 29�1=2=�2� 52 � 29��j 15

2
3
2i

� ��2� 3� 5� 7� 13� 29�1=2=�52 � 29��j 15
2

13
2 i

jI5=2 ÿ 3
2i � ��2� 3� 5� 7� 13� 29�1=2=�52 � 29��j 15

2 ÿ 13
2 i � �19�2� 5� 11� 29�1=2=�2� 52 � 29��j 15

2 ÿ 3
2i

ÿ �33�2� 3� 5� 29�1=2=�2� 52 � 29��j 15
2

7
2i

jI5=2
5
2i � �11�2� 5� 7� 13� 29�1=2=�22 � 52 � 29��j 15

2 ÿ 15
2 i � �17�2� 3� 5� 11� 29�1=2=�22 � 52 � 29��j 15

2 ÿ 5
2i

ÿ �11�2� 3� 5� 11� 29�1=2=�22 � 52 � 29��j 15
2

5
2i ÿ �7�2� 5� 7� 13� 29�1=2=�22 � 52 � 29��j 15

2
15
2 i

jI5=2 ÿ 5
2i � ÿ�7�2� 5� 7� 13� 29�1=2=�22 � 52 � 29��j 15

2 ÿ 15
2 i � �11�2� 3� 5� 11� 29�1=2=�22 � 52 � 29��j 15

2 ÿ 5
2i

� �17�2� 3� 5� 11� 29�1=2=�22 � 52 � 29��j 15
2

5
2i ÿ �11�2� 5� 7� 13� 29�1=2=�22 � 52 � 29��j 15

2
15
2 i

�m � 1
2jI5=2

1
2i � ��3� 5� 7� 11�1=2=�22 � 52��j 15

2 ÿ 9
2i � �22�3� 5�1=2=52�j 15

2
1
2i ÿ ��5� 7� 11� 13�1=2=�22 � 52��j 15

2
11
2 i

jI5=2 ÿ 1
2i � ÿ��5� 7� 11� 13�1=2=�22 � 52��j 15

2 ÿ 11
2 i ÿ �22�3� 5�1=2=52�j 15

2ÿ 1
2 i � ��3� 5� 7� 11�1=2=�22 � 52��j 15

2
9
2i

jI5=2
3
2i � ÿ�7�2� 5� 7� 11�1=2=�23 � 52��j 15

2 ÿ 7
2i � ��2� 3� 5� 7�1=2=�22 � 52��j15

2
3
2i ÿ ��2� 5� 11� 13�1=2=�23 � 52��j 15

2
13
2 i

jI5=2 ÿ 3
2i � ÿ��2� 5� 11� 13�1=2=�23 � 52��j 15

2 ÿ 13
2 i ÿ ��2� 3� 5� 7�1=2=�22 � 52��j 15

2 ÿ 3
2i ÿ �7�2� 5� 7� 11�1=2=�23 � 52=��j 15

2
7
2i

jI5=2
5
2i � ��2� 3� 5� 11� 13�1=2=�22 � 52��j 15

2 ÿ 15
2 i � �11�2� 5� 7�1=2=�23 � 52��j 15

2 ÿ 5
2i � �3�2� 5� 7�1=2=�2� 52��j 15

2
5
2i

� ��2� 3� 5� 11� 13�1=2=�23 � 52��j 15
2

15
2 i

jI5=2 ÿ 5
2i � ��2� 3� 5� 11� 13�1=2=�23 � 52��j 15

2 ÿ 15
2 i ÿ �3�2� 5� 7�1=2=�2� 52��j 15

2 ÿ 5
2i � �11�2� 5� 7�1=2=�23 � 52��j 15

2
5
2i

ÿ ��2� 3� 5� 11� 13�1=2=�22 � 52��j 15
2

15
2 i

j � 17
2 ; �m � ÿ17

2

jE3=2
3
2i � �2�3� 5� 13�1=2=�3� 52��j 17

2 ÿ 17
2 i ÿ ��3� 5� 7� 17�1=2=�3� 52��j 17

2 ÿ 7
2i � ��2� 3� 5� 11� 17�1=2=�2� 3� 52��j 17

2
3
2i

ÿ ��2� 3� 5� 13� 17�1=2=�2� 3� 52��j 17
2

13
2 i

jE3=2ÿ 3
2i � ÿ��2� 3� 5� 13� 17�1=2=�2� 3� 52��j 17

2 ÿ 13
2 i ÿ ��2� 3� 5� 11� 17�1=2=�2� 3� 52��j 17

2 ÿ 3
2i

ÿ ��3� 5� 7� 17�1=2=�3� 52��j 17
2

7
2i ÿ �2�3� 5� 13�1=2=�3� 52��j 17

2
17
2 i

�m � ÿ9
2

jG3=2
1
2i � ��5� 7� 11�1=2=52�j 17

2 ÿ 9
2i � ��2� 5� 13�1=2=52�j 17

2
1
2i ÿ ��2� 5� 11�1=2=52�j 17

2
11
2 i

jG3=2 ÿ 1
2i � ÿ��2� 5� 11�1=2=52�j 17

2 ÿ 11
2 i ÿ ��2� 5� 13�1=2=52�j 17

2 ÿ 1
2i � ��5� 7� 11�1=2=52�j 17

2
9
2i

jG3=2
3
2i � ÿ�2�3� 11� 17�1=2=�3� 52��j 17

2 ÿ 17
2 i ÿ ��3� 7� 11� 13�1=2=�3� 52��j 17

2 ÿ 7
2i ÿ �2�2� 3� 13�1=2=�3� 52��j 17

2
3
2i

� ��2� 3� 11�1=2=�3� 52��j 17
2

13
2 i

jG3=2 ÿ 3
2i � ��2� 3� 11�1=2=�3� 52��j 17

2 ÿ 13
2 i � �2�2� 3� 13�1=2=�3� 52��j 17

2 ÿ 3
2i ÿ ��3� 7� 11� 13�1=2=�3� 52��j 17

2
7
2i

� �2�3� 11� 17�1=2=�3� 52��j 17
2

17
2 i
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(Char et al., 1992). Part of the d-v I � D5 � C5 SAFs are
listed in Table 6. They are all linearly independent, but
not orthogonal with respect to �m. Our result are iden-
tical with the tables given by Damhus et al. (1984, p. 439)
for j � 1

2 ± 9
2 for the multiplicity-free case.

From (42)±(44) and using properties of d
j
m �m��� as

given in Rose (1957), we can derive the following
symmetries for the SAFs:

h jmj �E�� �m� i � �ÿ1� jÿmh jÿmj �E�� �mÿ� i; � � 1
2;

3
2;

h jmj �G3=2� �m
� i � �ÿ1� j�m��ÿ1=2h jÿmj �G3=2� �mÿ� i;

� � 1
2;

3
2;

h jmj �I5=2� �m
� i � �ÿ1� jÿm��ÿ1=2h jÿmj �I5=2� �mÿ� i;

� � 1
2;

3
2;

5
2:

�45�

Clearly, the SAFs have high symmetry and the symmetry
is independent of the multiplicity label �m.

8. Discussion and summary

The projection-operator method is often quoted as
extremely dif®cult for large-order groups. By using
reduced projection operators, the projection-operator
method becomes extremely simple and powerful. This
has enabled us to ®nd algebraic expressions for SAFs of
I. Another interesting point is that, among the 60
elements of I, only the 4 double-coset representatives
play a key role. The role played by all the other
remaining elements is merely to ensure that the
magnetic quantum number conservation rules are
satis®ed for the initial (trial) state and for the ®nal
(projected) state.

McLellian (1961) used the subduction method to
derive the irreducible matrices of the group I. The
D j # I subduced representation is irreducible for
j � 1

2 ;
3
2 ;

5
2, corresponding to the irreps E1=2;G3=2; I5=2.

The irreducible basis obtained by the subduction
method is called the SO3 # I irreducible basis, and is
labelled by ��;m� or �ÿ;m�, where m is the quantum
number of jz. McLellian also gives the irreducible
matrices of the generator �̂4 � C2;5, which is denoted by
the symbol C in the McLellian (1961) article. Notice that
McLellian used �m � exp�2�m=5i� and his quantum
number m is equivalent to our ÿ�. The relationship
between the SO3 # I irreducible matrix in McLellian
(1961), denoted as D���

0 �Ra�, and our D����Ra� is

D����Ra� � Uÿ1D���
0 �Ra�U; �46�

where U are

UE1=2 � f 1 i gdiag; UE3=2 � f 1 i gdiag

UG3=2 � f 1 1 i ÿi gdiag

UI5=2 �

�1=21=2� 0 0 0 0 ÿ�1=21=2�
0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 i 0 0

0 0 0 0 ÿi 0

�1=21=2� 0 0 0 0 �1=21=2�

0BBBBBBBB@

1CCCCCCCCA
;

�47�
where the rows of the matrix UI5=2 are of order
m � 5

2 ;
3
2 ;

1
2 ;ÿ 1

2 ;ÿ 3
2 ;ÿ 5

2.
The corresponding irreducible basis denoted by  

0�
� is

given by

 
0�
m �

P
�

U�m� 
�
�: �48�

However, the irreducible bases  
0�
m differ from the

McLellian basis by phase factors owing to the different
choice of the coordinate axes. From (43b), (47) and (48),
we know that  

�I5=2� �m
�5=2 in (44) are the SO3 # I irreducible

basis.
The I � D5 � C5 SAFs obtained in this paper and

those derived by Butler (1981) are identical up to
phases; and all are real except for the irrep I5=2 asso-
ciated with the components � � �� 5

2�. The latter is in
contrast with McLellian (1961) who gives SAFs that are
all complex.

In summary, the algebraic expressions (38) for the
reduced projection operators and equations (42)±(44)
for SAFs in the group chain I � D5 � C5 have been
derived using a double-induced technique in an ab initio
way. The algebraic expressions for the former are only
functions of the quantum numbers ��; �; ���, and those
for the latter are functions of only the quantum numbers
� j; �; �; �m� with �m serving as the multiplicity label. With
the algebraic expression of SAFs available, the
symmetries of SAFs were found. Combining this study
for the d-v case with the previous one for the s-v case, a
complete solution for the SAF problem of the icosahe-
dral group I is achieved (for the cases with multiplicity,
the SAFs are determined only up to an equivalence
transformation).
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